Mature tree management

Texas A&M AgriLife Extension

Larry A. Stein

Soil berms

- Prevents water from collecting around root ball of tree.
- It is ideal to allow berms to settle over winter before planting

- The vast majority of olives grown worldwide are not irrigated
- The olive has evolved under harsh and dry Mediterranean climate conditions.
- Thick and leathery leaves; waxy cuticle.
- Olive water use is directly related to crop load.
- The olive is tolerant to poor water quality

Water Supply

- In most irrigation systems delivery rate is 10 gallons per minute per acre.
 - Thus a 250 GPM well would be capable of irrigating 25 acres of orchard in one set.
- A 3 or 4 set system is optimal, more than 4 sets can create difficulty in meeting water demands during summer months and heavy cropping.

Water Supply cont.

Maximum water demand is in spring and early summer; April to July and September

Water will be needed in the winter months

Historical water usage in CA SHD orchards ranges between .8 and 2.0 acre/ft. per A

This number will probably be higher in TX

Why do we Irrigate Oil Olives?

- Most growers ask how often and how much should I irrigate my olives.
- Very few growers understand why they irrigate olives for oil and when it is important.
- Water demand varies considerably during different stages in crop development and by crop load.

Bloom period is sensitive to dry soil conditions; especially if hot

Olive shoot growth in June and July is critical so one can read their trees.

Poor soil water conditions can lead to a reduction in nutrient absorption

Suggested Production goals

- 1. Production of high quality fruit to maximize;
 - Volume of fruit yield at sustainable level
 - Oil quality
- 2. Generate regrowth adequate to support consistent crop load for following year.

• 3. Maintain basic metabolic functions in tree and maintain a healthy balanced tree.

Goal: Sustainable fruit yield

- Fruit production is optimized when tree is provided with adequate moisture and nutrition at key development stages
- Pre bloom and during bloom are the most critical stages where moisture stress can reduce fruit set

- Final fruit weight is influenced by moisture content at time of harvest
- Moisture content of fruit is critical for fruit removal at harvest

Goal: maximize oil content

- Oil begins to accumulate in fruit after pit hardening.
- After pit hardening the fruit becomes the tree's priority for allocation of both water and nutrients.
- Managed irrigation after pit hardening to minimally maintain fruit can increase oil content

Goal: Oil quality and extractability

- Both excessive and inadequate irrigation can cause oil quality problems.
- Insufficient moisture in fruit causes fruit shrivel.
- Shriveled fruit tends to exhibit advanced color with reduced oil content, can be misleading.
- Shriveled fruit may require the miller to add water during processing thus slowing processing and damaging quality
- Excessive fruit moisture produces washed out flavor and low oil% yields

Goal: regrowth to support balanced crops

- The olive is an alternate bearing plant in that crop yields fluctuate between "on" and "off" years.
- A significant factor in alternate bearing is the crops demand for water and nutrients thus limiting the trees ability to produce regrowth.
- If regrowth is limited there will not be sufficient fruit buds to support a consistent crop from year to year.

- The olive tree has two periods of rapid vegetative growth;
 - Early spring growth (March through May) corresponding with rising soil temperatures
 - Early fall normally corresponding with fruit veraison.
- The spring growth period is generally the most efficient time to encourage regrowth as the tree is not also supporting fruit and oil accumulation.

- Moisture supports basic photosynthesis and metabolic function
- Severe moisture stress at any period during the year will cause increased stress and exposure to disease pressure and frost damage.
- Growers often neglect to maintain moisture in the soil profile during dry winter months increasing frost damage.

Methods and concepts for practical irrigation management

- 1. Physical inspection of soil moisture in the wetted area
- 2. Understanding the volume of the wetted area, root depth, and root mass.
- 3. Understanding the time required to replenish moisture in the available wetted area.
- 4. Using evapo-transpiration or Et for determining baseline irrigation targets
- 5. Concept of regulated deficit irrigation or RDI during key periods.
- 6. Monitoring and understanding fruit moisture content and the effects of high and low fruit moisture at different stages.

1. Physical inspection

- Always the first and last determinant in irrigation timing and duration.
- Check soil depth from 0 to 20"
- Check area immediately under emitter and at edge of wetted area.

- Make sure orchard staff and farmer have uniform understanding of adequate moisture and terms.
- Backhoe soil pits are helpful to understand soil profile and rooting depth

2. The wetted area

- The olive is a relatively shallow rooted tree.
- Roots will grow and retract as the wetted area changes.
- Volume of the wetted area can be managed by;
 - Emitter spacing
 - Emitter flow rate
 - Multiple hoses
 - Irrigation duration and frequency
- Wetting pattern varies by soil type and infiltration rates.
- Short frequent irrigations often create small root mass

3. Irrigation duration

- The length of time water is applied can be determined using several factors;
 - Rate of application in terms of gallons per hour
 - Relative soil moisture holding capacity
 - Infiltration rate of water into soil considering any infiltration issues
 - Depth of roots
 - Hard pan, water table, salt intrusion or other physical limiting factors
- Applied irrigation should saturate soil to a minimum depth of 24"

- Irrigating for the same amount of time week after week can result in salt accumulation and limited root growth, it is good practice to vary duration occasionally.
- Consider water quality issues and soil conditions when planning irrigation duration, monitor for runoff.

4. Using et for basic irrigation guide

- Et is the measure of the loss of water to the atmosphere through transpiration, evaporation, and leaching.
- Et is calculated using a baseline of the water use of one acre of fully irrigated grass
- Crop coefficients can be used to adjust Et to crop specific use, known as Kc or crop coefficient.

- Olive crop coefficient is between .55 and .75 depending on stage of tree development, crop load, and canopy area.
- Et forecasts and historical data is available look for station nearest your grove.
- Et is best used during the period after pit hardening and verasion for deficit irrigation planning.

5. Deficit irrigation after pit hardening

- Multiple studies in several countries have shown reduced irrigation levels after pit hardening are successful in;
 - Improving oil quality
 - Increasing oil quantity
 - Advancing maturity
 - Maintaining year to year cropping

- Et used in base planning with fruit moisture the best determinant of stress level
- Fruit condition must always take priority for irrigation timing.

The taper method; pit hardening through verasion

- Several multi year studies in California indicated the most successful method of deficit irrigation after pit hardening was the gradual reduction of applied irrigation using Et.
- Irrigation levels were roughly 50% Et (no crop coefficient) at pit hardening.
- Applied irrigation was reduced by 5% Et weekly with minimum irrigation level of 20% Et.

- at time of verasion irrigation levels were increased to roughly 30% Et although fruit moisture level was used to adjust irrigation after verasion.
- Several long irrigations (12 to 16 hours) were applied 4 to 7 days before harvest
- Taper method increased oil quantity and improved oil quality over 6 years of trial.

Strategies for severe water limitations

- If water supply is not sufficient or reliable to produce a commercial crop consider removal of crop at bloom or after fruit set.
- Compounds are available for foliar application to remove fruit after pollination and set.
- If crop is eliminated water can be concentrated during spring and early summer to produce regrowth for 2015 crop and allow for limited fertigation.

Soil Chemistry

- Ideal pH between 6.5 and 7.5
- Many olives grown worldwide on calcareous soils with pH above 7.5
- pH below 6.5 can be problematic and requires amendment with lime prior to planting
- Boron in excess of 2ppm can be toxic

Tolerant of less fertile soil

Shallow soils promote less excessive growth

Too much nitrogen can lead to a big crop of fruit and alternate bearing

Correlation between high yield and leaf Potassium

Adequate leaf tissue nutrient levels

Sample; mid July; typically after pit hardening;about 50 trees, 2 leaves

per-tree

N 1.5 to 1.8 %

P 0.1 to 0.2 %

K 0,8 4 %

B 20 ppm

Zn 20 ppm

Ground applications are typically all that is needed

Foliar sprays are typically not worth

the money

Standard fertility recommendation: 30 units of nitrogen per acre

Best way would be to inject N-32

Ammonium sulfate

Usually P and K will be sufficient

Harvest challenges

Shaker damage

- sterli

Texas A&M AgriLife Extension Service

"What a man hears, he may doubt; what he sees, he may possibly doubt but what he does himself, he cannot

Dedicated to removing doubt with research based education

doubt.

Typical protocol is to work through the county Extension agent

Three fruit specialists

Regional Program Leaders