Olive Orchard Nutrition & Fertilization

Jim Kamas Asst. Professor & Extension Fruit Specialist Fredericksburg, TX

The Essential Elements Macronutrients

- Carbon
 CO₂
- Hydrogen H₂O
- Oxygen H_2O, O_2
- Phosphorus
- Potassium
- Nitrogen
- Sulfur
- Calcium
- Iron
- Magnesium

	IA	-																0
1		IIA											IIIA	IVA	VA	VIA	VIIA	² He
2	3 Li	4 Be											5 B	°c	7 N	°	9 F	10 Ne
з	¹¹ Na	12 Mg	IIIB	IVB	VB	VIB	VIIB		-VIIB		IB	IIB	13 Al	14 Si	15 P	16 S	17 CI	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	⁵⁰ Sn	51 Sb	52 Te	53 	54 Xe
6	55 Cs	56 Ba	57 *La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	⁸⁸ Ra	89 +Ac	104 104	105 105	106 106	107 107	108 108	109 109	110 110	111 111	112 112		114 114		116 116		118 118
	Lantha	nide	58	59	60	61	62	63	64	65	66	67	68	69	70	71		
	Se	eries	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu		
	+Acti Se	nide eries	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr		

The Essential Elements Mcronutrients

Boron

► Zinc

Manganese

Copper

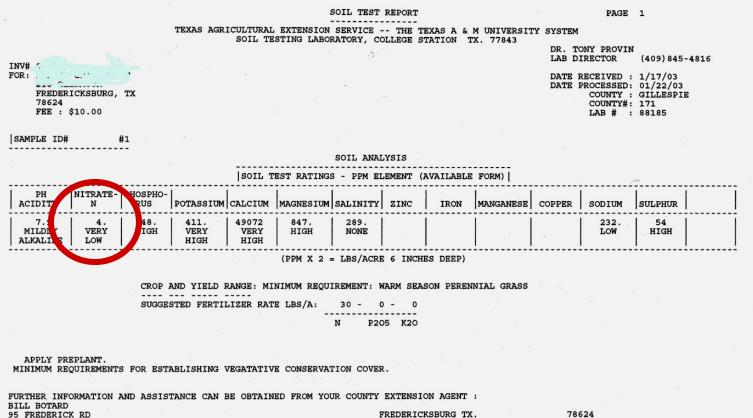
Molybdenum

► Chlorine

Н	H Essential and Beneficial Elements in Higher Plants											He					
Li	Be		H			iviine Mine						В	С	N	0	F	Ne
Na	Mg			Ess	ential	Nonr	niner	al Ele	ment			AI	Si	Ρ	S	CL	Ar
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
Cs	Ва	Lu	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt									
		La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb		
		Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No		

• <u>Will</u> Tell You

- Soil pH
- Soil NutrientComposition
- Will <u>Not</u> Tell You
 - Soil Depth
 - Soil Drainage
 - Presence of Soil Borne
 Pathogens
 - Presence of Residual
 Chemicals
 - Suitability to Grow
 Olives


A Soil Sample....

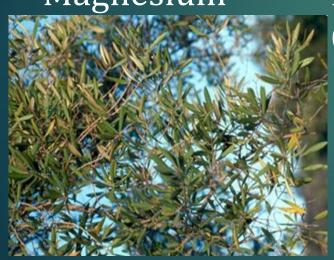
Strongly Aci	d	Medium Acid	Slightly Acid	Very Slightly Acid	Very Slightly Alkaline	Slightly Alkaline	Medium Alkaline	Strongly	Alkaline
				NITRO	GEN				
				PHOSPH	IORUS				
				POTAS	MILLE				
				FUIAS	SIUM				in the second
			1 Alleria	SULP	HUR				
				CALC	MUI				
				MACHI	CILINA				
r. *				MAGNE	SIUM				
	IRC	ON						Contrast Contrast Contrast	And the second second
	MANGA	ANESE						A DESCRIPTION OF THE OWNER	
	BOR	ON							
	BUR								
C	OPPER A	AND ZIN	С						
								MOLYBDE	NUM
									-
4.0 4.5 5.	0 5.5	5 6.0	6.	5 7	.0 7.	5 8.	0 8.	5 9.0	9.5 10

Nitrogen

Nutrient Mobility in Plants

Mobile

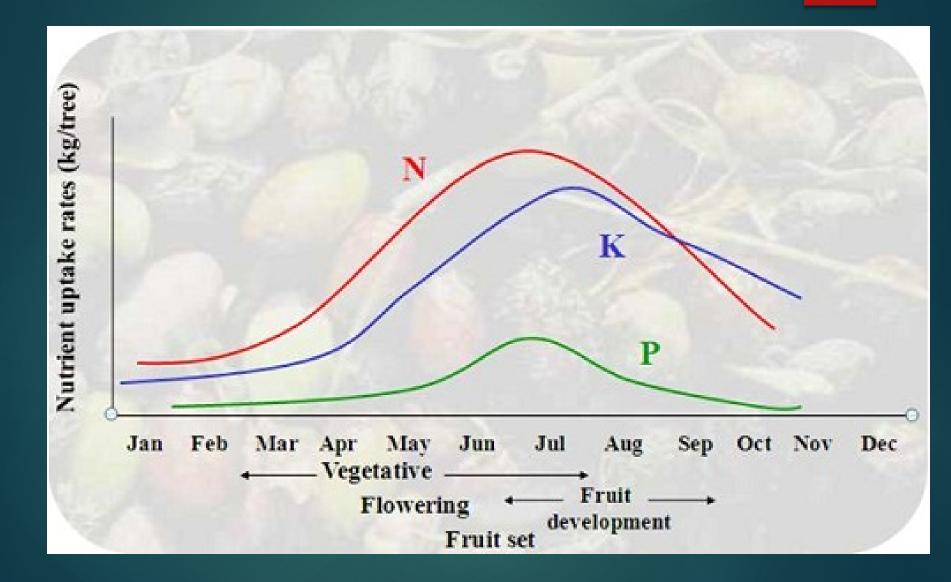
Non-Mobile


Partially Mobile

Nitrogen Phosphorus Potassium Magnesium

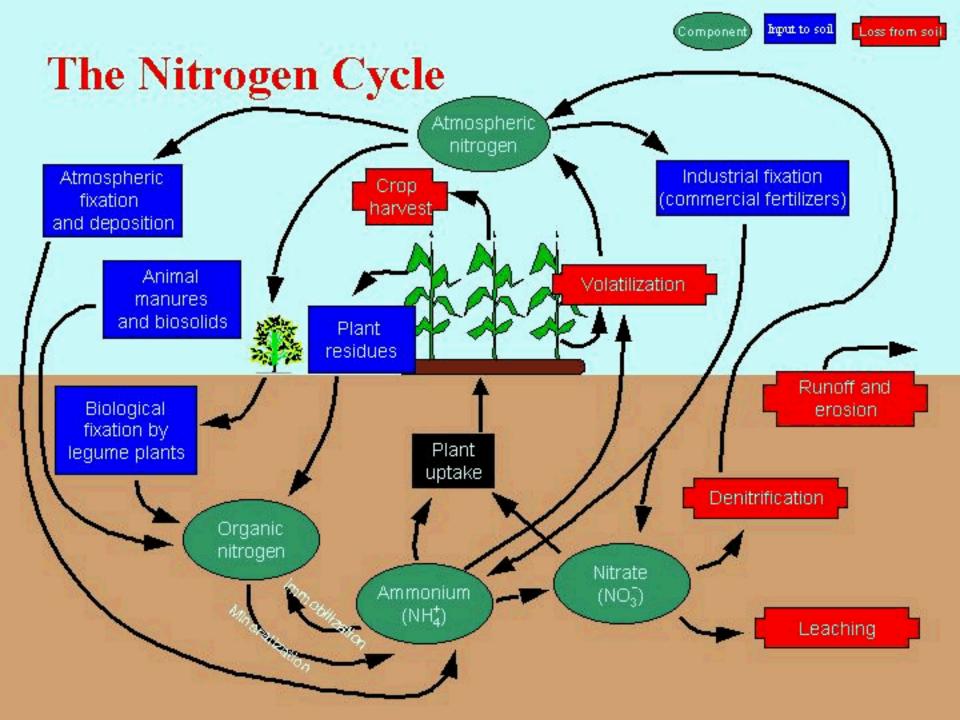
Calcium Iron Zinc Molybdenum Chlorine Sulfur Manganese Copper

Zinc Deficiency


Nitrogen Deficiency

Nutrient Removal Rates in Pounds per Acre – Mature Orchard

Yield in **P205** Tons Ν **K20** Mg S Acre **Olives** 157 9 130 31 18 15


Seasonal Nutrient Requirements of Olive Trees

Critical Characteristics of Nitrogen

- Very Mobile in Soils (neg. charge)
- Very Mobile in Plants
- Soils Typically Very Low in Nitrogen
- Native Nitrogen in Soils Consists of:
 - Complex, Insoluble Unavailable Organic Compounds
 - Simple, More Soluble, Available
 Compounds in Soil Solution

Key to Nitrogen Managemen<mark>t</mark>

- Promote Growth Early in the Season
- Maintain Healthy Canopy
- Small, Frequent Applications Most Economical
- Use Caution on Young Trees
- Foliar Applications May Have Value Post-Harvest

What is a "Unit" of Nitrogen?

1	Periodic Table											VIIA	0 ² He					
2	³ Li	⁴ Be		of	ť	ne	EI	en	ne	nt	S		5 B	°C	7 N	⁸ 0	9 F	¹⁰ Ne
3	¹¹ Na	12 Mg	IIIB	IVB	VB	VIB	VIIB		- VII -		IB	IIB	¹³ Al	¹⁴ Si	¹⁵ P	¹⁶ S	¹⁷ CI	¹⁸ Ar
4	¹⁹ K	20 Ca	21 Sc	22 Ti	23 V	²⁴ Cr	²⁵ Mn	²⁶ Fe	27 Co	28 Ni	²⁹ Cu	³⁰ Zn	Ga	32 Ge	33 As	³⁴ Se	³⁵ Br	³⁶ Kr
5	³⁷ Rb	³⁸ Sr	³⁹ Y	⁴⁰ Zr	⁴¹ Nb	42 Mo	43 Tc	⁴⁴ Ru	⁴⁵ Rh	⁴⁶ Pd	47 Ag	⁴⁸ Cd	49 In	50 Sn	51 Sb	52 Te	53 	⁵⁴ Xe
6	55 Cs	56 Ba	⁵⁷ *La	72 Hf	⁷³ Ta	74 W	75 Re	⁷⁶ Os	77 Ir	78 Pt	79 Au	⁸⁰ Hg	81 TI	⁸² Pb	83 Bi	⁸⁴ Po	⁸⁵ At	⁸⁶ Rn
7	87 Fr	⁸⁸ Ra	⁸⁹ +Ac	¹⁰⁴ Rf	¹⁰⁵ Ha	¹⁰⁶ Sg	¹⁰⁷ Ns	¹⁰⁸ Hs	109 Mt	110 110	111 111	¹¹² 112	¹¹³ 113					
,	Lanth Serie	anide s	⁵⁸ Ce	⁵⁹ Pr	60 Nd	⁶¹ Pm	Sm	Eu	Gd	65 Tb	66 Dy	67 Ho	Er	⁶⁹ Tm	70 Yb	⁷¹ Lu		
+	- Actini Serie		⁹⁰ Th	⁹¹ Ра	⁹² U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	⁹⁸ Cf	99 Es	¹⁰⁰ Fm	¹⁰¹ Md	¹⁰² No	¹⁰³ Lr		

A "Unit" is One Pound of Actual Nitrogen

Based on Atomic Weight of Molecule

- Example : Ammonium Nitrate is 33% N
- 3 # NH₄NO₃ = ~1lb Actual Nitrogen

Practical Nitrogen Sources

<u>Material</u>	<u>%N</u>	<u>Salt Index*</u>	<u>Comments</u>
Anhydrous Ammonia	82	47	Very volatile
(NH ₃)			Liquid/Gas
Urea	46	75	Volatile Dry
$(NH_2-CO-NH_2)$			Material
Ammonium Nitrate	34	105	Dry Material
(NH_4NO_3)			Less Volatile
Nitrogen Solutions (UAN)	28-32	74	Volatile, usually
Urea +NH ₄ NO ₃ + water			Injected in Drip
Ammonium Sulfate	21	69	Volatile on High
$(NH_4)_2SO_4$			pH soils

* Compared to Sodium Nitrate (=100)

Practical Nitrogen Manageme<mark>nt</mark>

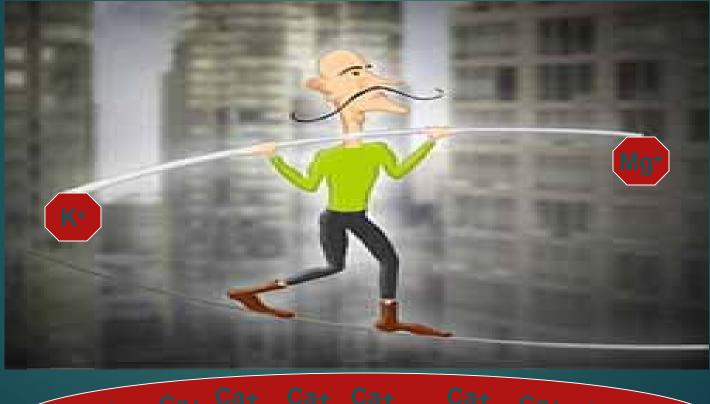
- Broadcast First Application in Spring? (Rainfall Dependent)
- NOT Necessary Well Before Budbreak!
- Make Nutrients Available to As Many Roots As Possible
- Summer Applications May Be Best Applied Through Drip System

Best Guide For Analyzing Nitrogen Program in Bearing Trees?

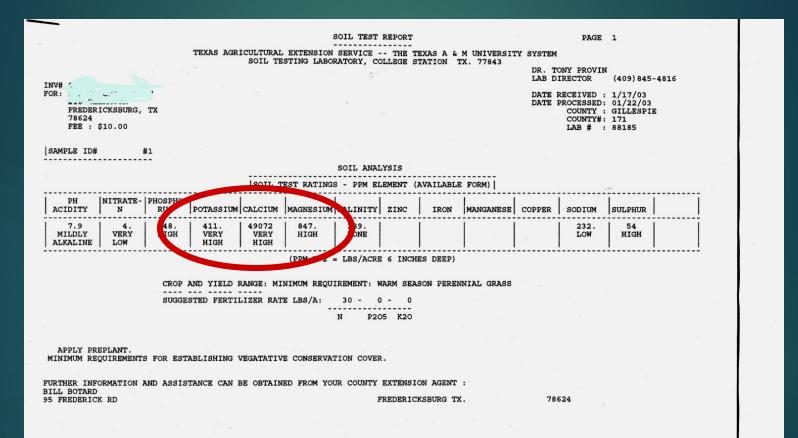
1.) Canopy Fill/ Fruitfulness

2.) Leaf Color

3.) Leaf Health Post-Harvest


Phosphorus?

- Moves Very Slowly in Soils
- Acidic Soils May Need Additions
- Additions Best Made Pre-Plant, Then Incorporated
- High pH Soils?
 - Typically Have High Levels
 - Very Available
 - Olive Trees Are Very Adept At Picking up Phosphorus
 - Competition for Uptake With Iron and Zinc


Phosphorus Deficiency

Potassium/Magnesium/Calcium Why Leaf Sampling is a VERY Good Idea

Complicating Factors in South, Central & West Texas

.

Potassium

Solution Mobile Nutrient

Deficiencies First
 Appear After
 Bloom, but Usually
 Closer to Harvest

Solution Severe Severe Following Dry Bloom-Time Periods

Potassium Deficiency

Magnesium Deficiency

Mobile Nutrient

Deficiencies First Appear After Bloom

Solution Severe Following Wet Bloom-Time Periods

Managing Potassium & Magnesium Deficiencies

Acid Soils May Need Liming Dolomitic Best Source of Mg

Sulphate of Potassia and Magnesia on Neutral or High pH Soils

K Mag 21.5% K₂0, 18% MgO

or

Sul-Po-Mag 18% K₂0, 11% MgO

Strategies for Managing Potassium and Magnesium Additions

- Leaf Sampling to Determine Following Year's Need
- Applications of Ground Applied Materials in the Fall, Following Harvest
- BAND Material Rather Than Broadcast
- Err on the Side of Ample Potassium Rather Than Magnesium

Boron

 Mobile in Plants
 Key Uptake Occurs Post-Harvest
 Foliar Applications
 Soil Applications

Solubor

C

BASE

BORAX

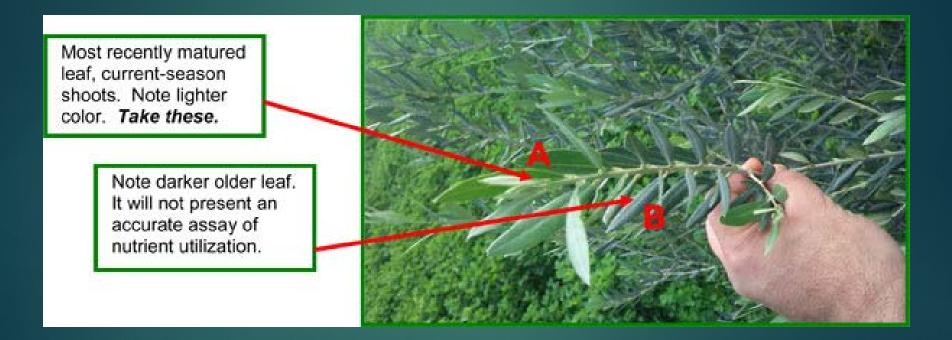
TRUE

-

25 kg net

and fairing (198)

Tissue Testing & Timing?


Vields Are Usually Suppressed Even Before Nitrogen Deficiency Symptoms are Evident

Nitrogen Levels Early Season Fluctuate Greatly Between Sites, Varieties and Between Trees

Mid-Summer Generally Recognized As Best Time to Take Tissue for Analysis

Using Recently Matured Leaves

Leaf Tissue Testing

To Interpretation!
Standards???
Reasons Behind Problems [©] Weed Control? [©] Shallow Soils?
لائلات؟ کی کی ک

Results Are Subject

Nutrient	Deficient
Nitrogen	< 1.4%
Phosphorus	< 0.05%
Potassium	< 0.4%
Calcium	< 0.6%
Magnesium	< 0.08%
Sulfur	< 0.02%
ron	< 40 ppm
linc	< 8 ppm
Boron	< 14 ppm
Manganese	< 5 ppm
Copper	< 1.5 ppm
Sodium	
Chloride	

Olive Leaf Nutrient Levels

	Optimum	Toxic
	1.5 – 2.0%	> 2.55%
	0.1 – 0.3%	> 0.34%
	0.8 – 1.0%	> 1.65%
	1.0 – 1.43%	> 3.15%
	0.1 – 0.16%	> 0.69%
	0.08 – 0.16%	> 0.32%
	90 – 124 ppm	> 460 ppm
	10 - 24 ppm	> 84 ppm
	19 – 150 ppm	>185 ppm
	20 – 36 ppm	> 164 ppm
٦	4 - 9 ppm	> 78 ppm
		> 0.20%
	100 ppm	> 0.50%

Stan Kailis, David Harris, 2007

Non-Traditional Crop Additions?

